skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Caiafa, Cesar F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Recently, linear formulations and convex optimization methods have been proposed to predict diffusion-weighted Magnetic Resonance Imaging (dMRI) data given estimates of brain connections generated using tractography algorithms. The size of the linear models comprising such methods grows with both dMRI data and connectome resolution, and can become very large when applied to modern data. In this paper, we introduce a method to encode dMRI signals and large connectomes, i.e., those that range from hundreds of thousands to millions of fascicles (bundles of neuronal axons), by using a sparse tensor decomposition. We show that this tensor decomposition accurately approximates the Linear Fascicle Evaluation (LiFE) model, one of the recently developed linear models. We provide a theoretical analysis of the accuracy of the sparse decomposed model, LiFESD, and demonstrate that it can reduce the size of the model significantly. Also, we develop algorithms to implement the optimization solver using the tensor representation in an efficient way. 
    more » « less
  2. We use a multidimensional signal representation that inte- grates diffusion Magnetic Resonance Imaging (dMRI) and tractography (brain connections) using sparse tensor decomposition. The representa- tion encodes brain connections (fibers) into a very-large, but sparse, core tensor and allows to predict dMRI measurements based on a dictionary of diffusion signals. We propose an algorithm to learn the constituent parts of the model from a dataset. The algorithm assumes a tractography model (support of core tensor) and iteratively minimizes the Frobenius norm of the error as a function of the dictionary atoms, the values of nonzero entries in the sparse core tensor and the fiber weights. We use a nonparametric dictionary learning (DL) approach to estimate signal atoms. Moreover, the algorithm is able to learn multiple dictionaries associated to different brain locations (voxels) allowing for mapping distinctive tissue types. We illustrate the algorithm through results obtained on a large in-vivo high-resolution dataset. 
    more » « less